
Db2 Night Show

Db2 Java

Performance

Best Practices
Dave Beulke,

Dave Beulke @ Associates,
Division of Pragmatic Solutions, Inc.

Dave @ DaveBeulke.com - 703 798-3283

• Member of the inaugural IBM Db2 Information Champions
• One of 45 IBM Db2 Gold Consultant Worldwide
• Past President of International Db2 Users Group - IDUG
• Best speaker at CMG conference & former TDWI instructor

• Former co-author of certification tests

• Db2 Certification test

• IBM Business Intelligence certification test

• Former columnist for Db2 Magazine

• Former editor of the IDUG Solutions Journal

•

• Extensive experience in architecture & performance of large systems, databases and DW systems

• Working with Db2 on z/OS since V1.2

• Working with Db2 on LUW since OS/2 Extended Edition

• First data warehouse in 1988 for E.F. Hutton

• Programming in Java for Syspedia since 1996 Find, understand and integrate your data faster!
2

• Education Seminars
• Db2 Version 10 Transition
• Db2 Performance for Java Developers
• Data Warehousing Designs for Performance
• How to Do a Performance Review
• Data Studio and Others

• Consulting
• CPU Demand Reduction – Guaranteed!
• Db2 Performance Reviews
• Database Design Review
• Security Audit & Assessments
• Migration Assistance

Performance BLOG:
www.DaveBeulke.com

© Copyright 2021 Dave @ davebeulke.com

I am honored to have been a presenter at 30+ years of Db2 conferences
2021 – Java Db2 Performance Best Practices

Security Best Practices volume III
2020 - SQL Performance for Big Data
2019 - Best Design and Performance Practices for Analytics
2018 – Philadelphia - Security Best Practices Volume II

-Best Design and Performance Practices for Analytics
2017 – Anaheim -Understand IDAA Performance and Justify an IDAA Appliance
2016 – Austin Performance Enterprise Architectures for Analytic Design Patterns

How to do your own Db2 Security Audit
2015 - Valley Forge Db2 Security Practices

Big Data Performance Analytics Insights
2014 – Phoenix Big Data SQL Considerations
2013 – Orlando Big Data Disaster Recovery Performance
2012 – Denver Agile Big Data Analytics
2011 – Anaheim Db2 Temporal Tables Performance Designs
2010 - Tampa - Java DB2 Developer Performance Best Practices
2009 – Denver -Java Db2 Perf with pureQuery and Data Studio

Improve Performance with Db2 Version 9 for z/OS
2008 – Dallas - Java pureQuery and Data Studio Performance
2007 - San Jose - Developing High Performance SOA Java Db2 Apps

Why I want Db2 Version 9
2006 - Tampa - Class - How to do a Db2 Performance Review

Db2 Data Sharing
Data Warehouse Designs for Performance

2005 – Denver - High Performance Data Warehousing
2004 – Orlando – Db2 V8 Performance

President of IDUG
2003 - Las Vegas - Db2 UDB Server for z/OS V8 Breaking all the Limits

Co-author IBM Business Intelligence Certification Exam

3

1994 - San Diego - Database Design for Time Sensitive Data &
Guidelines for Db2 Column Function Usage

1993 – Dallas - High Availability Systems: A Case Study &
Db2 V3: A First-Cut Analysis

1992 - New York -Db2 –CICS Interface Tuning
1991 - San Francisco - Pragmatic Db2 Capacity Planning for DBAs
1990 – Chicago - Performance Implication of Db2 Design Decisions
1989 – Chicago - Db2 Performance Considerations

2002 - San Diego - Db2 UDB for LUW 8 - What is new in Db2 Version 8
Data Warehouse Performance

2001 – Orlando -Data Sharing Recovery Cookbook
Designing a Data Warehouse for High Performance
Co-authored the first IBM Db2 z/OS Certification Exam

2000 – Dallas - Db2 Data Warehouse Performance Part II
1999 – Orlando - Store Procedures & Multi-Tier Performance

Developing your Business Intelligence Strategy
Evaluating OLAP Tools

1998 - San Francisco - Db2 Version 6 Universal Solutions
Db2 Data Warehouse Performance
Db2 & the Internet Part II

1997 – Chicago - Db2 & the Internet
1996 – Dallas- Sysplex & Db2 Data Sharing

Best Speaker Award at CMG Conference Mullen Award
1995 – Orlando - Practical Performance Tips

Improving Application Development Efficiency

© Copyright 2021 Dave @ davebeulke.com

Db2 Java Performance Best Practices
• Understand the Db2 coding best practices to enhance performance, avoid problems and enhance

debugging.

• Realize all the application coding options and java class frameworks that can help and hinder
performance.

• Realize the debugging methods available, the java tracing tools and the easy and fast best practices to
find performance issues.

• Understand the standard performance characteristics and special java statistics to monitor to determine
quickly whether a performance problem or improvement opportunity exists.

• How to bring some of these java performance tuning best practices to your shop and enhance your
standard development procedures.

4

Strategic and Tactical Discoveries
&

Recommendations

© Copyright 2021 Dave @ davebeulke.com

Story behind every performance problem
• Performance issues always have a story

• Need to understand the background, context and issues

• Performance issues are thrust upon us
• Seems that every time it is an emergency

• Always time to fix it later

• The stories you are about to hear are true. The names and circumstances
have been changed to protect the innocence.
My name is Dave Beulke and I fix these situations.

• After learning from this session you will be able to fix them too.

6

© Copyright 2021 Dave @ davebeulke.com

Started Monday morning….

• Processing has been executing for 2+ hours

Number of Vice
Presidents MS Team
me first thing in the

morning

• Who are the developers?

• What was the performance history in development and QA?

• When was the process supposed to finish? Runtime expectations

• Where was it tested? Where did it come from-home grown/vendor?

• Why is it a performance issues? SNAFU

Always ask these
five questions!

7

© Copyright 2021 Dave @ davebeulke.com

Start the investigation of performance

• Best if the performance problem is still running

Gather all statistics from every monitor available

• Production access

• Authorization for the monitor access

• Monitor always on/started

• Correct traces turned on via zOS, zLINUX, Server, Db2 etc.…

• Capture the Web Server Logs & application logs

• Traceable situation – dump of the application abend?

Plan on the worst case scenario

8

© Copyright 2021 Dave @ davebeulke.com

1 out of 7 isn’t bad
• The Framework to partition the work along the data partition boundaries

• Monitor shows
• One job doing the work

• Seven others doing nothing

9

+ Elapsed PlanName DB2 Status GetPg Update Commit CORRID/JOBNM

+ ---------- -------- ----- ------------ ------ ------ ------ ------------

+ 02:03:52.1 P J312NT DSN3 WAIT-SYNC-IO 21311K 0 0 J312NT09

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

Discoveries and Recommendations

Architecture

Frameworks

10

© Copyright 2021 Dave @ davebeulke.com

Frameworks
• All frameworks can perform efficiently

• Pattern for the processing always works

• Beware of the “lightweight” frameworks
• Beware of “Demo” ware

• Only need their java libraries copied into your development
• Beware of their security vulnerabilities especially if open source

• Beware of their update cycle, versions and dependencies

• Beware of “Object generators” or “Web Engines”
• Also Event or Validation engines

11

© Copyright 2021 Dave @ davebeulke.com

Avoid Spring Batch! Db2 can do it faster? but if you must consider it

• Architecture – Read, Process, Write concept
• Know your database partitioning ranges

• Calculate result set size (#Rows * Column width)
• Align JVM/Chunk with partitioning

• Realize updates lock – isolate all locking appropriately

• Adjust minimize JVM settings per chunk

• Runtime Memory allocations appropriate
• Optimize the Chunk Size

• Must have a CPU processor per JVM

• Chunk size determined by
• One chunk “read” at time processes

• Logical Read Process Write

12

© Copyright 2021 Dave @ davebeulke.com

Avoid Hibernate!
• UOW & Transaction Scope

• One hibernate definition many uses

• Persistence cache control
• How much cache is enough

• Hibernate and persistence layer issues
• Lazy, Evict, etc.…..

• Regular SQL versus Hibernate SQL

• Optimistic-lock

• Logging Considerations
• How many logs are your transactions writing to?

13

© Copyright 2021 Dave @ davebeulke.com

Avoid Hibernate – Avoid/eliminate if possible
• UOW & Transaction Scope

Many object oriented application persist the data for easy object programming languages.
Generic persistence of SOA objects leads to deadlocks, data integrity and usually poor performance.

• Hibernate and persistence layer issues
The Hibernate interface, persistence layer and its performance problems are a full presentation by
itself. Many companies are having difficulties with the Hibernate settings, its handling of persistence,
its SQL issues. Hibernate can cause many performance problems if setup badly or used
inapropriately. Check your configuration settings, customize them for your application and minimize
the amount of data Hibernate persists are the best practices for performance.

Logging Considerations
How much logging is happening in your distributed environments? Check the UNIX and Windows
connections because their logging can be 75% of the transaction time.

14

© Copyright 2021 Dave @ davebeulke.com

Framework Configuration & Deployment Issues

Configuration data is
difficult to deploy

• Has repeatedly delayed testing efforts

• Beware of tooling or loading configuration
data to development, testing, and
production database

• Configuration/reference data will not
accelerate application development effort

Incremental deployment
can’t easily be done

• Can’t be shared - usually multiple versions
on server add complexity to the issues

• Incremental improvements or changes
can’t be done online

• Framework doesn’t provide availability,
security and reliability

• Fragile frameworks can ruin your
application availability, reliability and
scalability

15

© Copyright 2021 Dave @ davebeulke.com

Collect more info on the running process
• Spring configuration & framework spawned the other processes

• Monitor shows
• One job UOW is out of control, syncing with other 7 processes

17

+ Elapsed PlanName DB2 Status GetPg Update Commit CORRID/JOBNM

+ ---------- -------- ----- ------------ ------ ------ ------ ------------

+ 02:03:52.1 P J312NT DSN3 WAIT-SYNC-IO 21311K 0 0 J312NT09

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

+ 02:03:51.9 * J312NT DSN3 WAIT-LOCKPQS 0 0 0 DSN3DBM1

© Copyright 2021 Dave @ davebeulke.com

Module Considerations
• Java class overall module size

• Discover the Synchronizing within the application
• Static method forces each calling thread to block until no other thread is executing

that static method

• Is your framework and application thread safe?

• Where within the application is the module Serialization?
• Application waits for processing of another framework UOW portion

• Duplicate java classes within projects
• Or duplicate packages or paths within the applications

18

Discoveries and Recommendations

Java Debugging

19

© Copyright 2021 Dave @ davebeulke.com

Gather runtime information is the best
• Thread details are critical performance & debugging information

20

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

Java Debugging display
• Debug display showing JDBC Db2 prepared statement

• No parameter markers
• Using invalid java types to receive Db2 column values

• SQLCODE ignored, copied and set
• Variety of SQLCODE(s) - +100, -100, -811 etc……

• Framework runtime documentation there are no memory errors logged

• Need to remember to CLOSE all SQL objects
• stmt(s), resultSet(s) and Connection

• Verify that the Java processing is THREADSAFE
• Subroutine integrity

21

© Copyright 2021 Dave @ davebeulke.com

Java debugging resources
• Developer testing environment

• Not enough data/performance testing resources

• No End-to-End performance documentation for fixes

• 1 in a Million data situations -100s of billions of rows in the cloud

• Performance needs to be given enough time and be a priority
• Changes documented, need to be given priority for performance analysis

• Object point analysis/Process point
• Need to monitor memory objects within the application

• Arrays, Hash Maps, Vectors, caching within any java object or framework component

• Management support structures
• CM procedures drive performance analysis – checklist of components tested

• Documentation gathered while going through the business requirements and functionality
22

© Copyright 2021 Dave @ davebeulke.com

Testing Tools
• Many tools can help discover problems

• Copied code

• Dead code

• Open Source Patch Maintenance issues

• Static code analysis
• PMD, SONAR , IntelliJ and etc…..reveal problems

• https://java-source.net/open-source/code-analyzers

• Most are free

• Cloud can host analysis

• Need automated tests with common data set that helps developers test services
• Automated JUnit testing?

• Thread safe testing?

23

© Copyright 2021 Dave @ davebeulke.com

Debugging is a matter of Dev/QA

• Assign resources from development team

• Integrate automated tests during development

• Develop bulk and unique test data for validation

• SQL EXPLAINs captured within the test environments

Automated tools should be a requirement

• Understanding of business service usage

• Data missing keys, codes and proper optional types parameters

• Invalid type data flowing into services parameters

• Platform to platform conversions

• (EBCDIC to UNICODE) or (UNICODE to UNICODE) or (ASCII to ASCII to ASCII) or XX to YY

Generated test data for services

24

© Copyright 2021 Dave @ davebeulke.com

Benefits of Profiling Tools
• Integrated Profiling within RAD and <insert your IDE here>

• Provide a trace of the normal flow of the application

• Discover the exceptional java classes
• Discovered 60,000+ SQL calls for process

• Uncovered java classes used from old releases

• Realize where cache is being used for transactions

• Discovered data validation being done multiple times

• Web services/applications logic flow being used
• Uncover the performance truth about an application

• See the time spent within each java package, class and method

• Understand the modules referenced

• Discover unnecessary looping, arrays and tables being built

25

© Copyright 2021 Dave @ davebeulke.com

Profiling Statistics
• Thread Visualizer

26

© Copyright 2021 Dave @ davebeulke.com

Java Profiling
• Is there a test history of Profiling the application

• Thread Statistics

• Monitor Statistics

• Threads Visualizer

27

© Copyright 2021 Dave @ davebeulke.com

Thread Statistics
• More Statistics

28

© Copyright 2021 Dave @ davebeulke.com

SUSPENDS, DEADLOCKS & ROLLBACKS
• Usually undocumented and/or tracked when Java is involved!

• No documentation on any errors
• Email all error(s) to the developers!

• Trying to mimic a database within the application
• Cache involved in problem situations/transactions

• How often is a memory/cache error reported/involved in these errors?

• How many insert/update/deletes within application
• When is the processing done within the UOW – Commit points

29

Discoveries and Recommendations

30

Class, Method

Dependencies

© Copyright 2021 Dave @ davebeulke.com

Looking at your Java threads in detail
• Thread details are critical performance & debugging information

31

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

Java Class Dependencies

How many java
module

dependencies exist?

Are the
dependencies

evenly distributed?

How many forks
within the

development, QA
and production

versions?

Dependencies on
java classes that
were expected?

• Old releases of software

• Other unrelated java
applications

• Correct versions,
generic references and
extra java packages

On-going Java Class
dependency
analysis

• Weekly report to
uncover application
creep

• How does the team
report and manages the
java release?

• What is the reporting
process?

32

© Copyright 2021 Dave @ davebeulke.com

Framework Java Class Dependencies
• How many frameworks is your project dependent on?

• Have all the frameworks been copied in every module?

• How many framework versions is project dependent on?
• Sometime multiple versions introduced within application

• Have the frameworks been integrated into modules where they aren’t
used or needed?

33

© Copyright 2021 Dave @ davebeulke.com

Database Performance Dependencies

• Which Java classes reference the database
• Dependencies on the SQL or Hibernate or ???

• Cross Reference SQL statements to the Java Classes

• Beware of using the wrong SQL statement for their data
• Might supply the data but doesn’t do it efficiently -

• Database designs not Best Practices
• Insufficient structures

• # of Partitions, Index structure, Index Columns

• Application processing and flow
• Amount of data processed

• Order of processing flow impacts amount of deadlocks

34

© Copyright 2021 Dave @ davebeulke.com

Dependency on Hibernate Issues
• Convert Hibernate to Db2 Native Stored Procedures

• Remove dynamic Hibernate SQL statements

• Convert into stored procedures will dramatically reduce CPU & overall TCO

• Exploits Db2 zIIP CPU resources that are free

• Beware of stale cache data problems
• Dependent on the cache for data

• Reference data
• Slowly changing data within the reference data

• Transaction UOW data

• Local cache and failover dependencies
• Beware of multiple servers/clouds for performance

35

© Copyright 2021 Dave @ davebeulke.com

Cache Data Persistence

How much memory
is required for the
peak number of

transactions?

Multiply the numbers
out to understand the
memory needed

• Transactions *
cache memory *
concurrent =
peak server memory
requirements

Remember to leave
enough headroom

• Server/Cloud cache
requirements

• Server balancing,
Fail-over and
capacity planning

Spawn another
server/Kubernetes
instance

• When, where, and
how is it spawned?

36

Client Situations

Discoveries and Recommendations

38

© Copyright 2021 Dave @ davebeulke.com

Every picture tells a story don’t it!
• First impressions

39

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

Data Integrity
• ABORTS=2

40

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

SQL Loops
• Open Cursor Closed Cursor

• Difference spells trouble – 1.1m

41

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

Lock Usage
• Why or how are Lock tables?

• Which table(s)?

42

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 08:29:59.162472 End=01/19/2021 10:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

SQL Statement reuse
• Number of Describes = 3.9m

• Why?

43

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

Be Prepared
• How about some thread or SQL reuse?

44

THREAD HISTORY SQL COUNTS

HPLN

+ Thread: Plan=?RRSAF Connid=RRSAF Corrid=J312NT09 Authid=J312MSP

+ Attach: RRSAF DB2=DSN3 MVS=LPAR1

+ Time : Start=01/19/2021 05:29:59.162472 End=01/19/2021 07:34:00.761584

+ Luwid=PRODNET.J312BS0.D8D8602315E2

+

+ Commit = 44 Abort = 2 Select = 0

+ Open Cursor = 1344387 Close Cursor = 183722 Fetch = 1163383

+ Insert = 168902 Delete = 38088 Update = 1940714

+ Describe = 3909142 Lock Table = 7 Prepare = 3492098

+ Grant = 0 Revoke = 0 Set Rules = 0

© Copyright 2021 Dave @ davebeulke.com

Java logic issues - Cursor loop control
1. The number of ABORTS=2. How are these impacting UOW and integrity of the data

INSERTED/DELETED? Aborts should ALWAYS be = 0.

2. OPEN CURSOR<>CLOSE CURSOR which is causing the -479 error.

3. LOCK TABLE - Why do there need to LOCK TABLE statements? Which tables and where
in the processing logic?

4. The number of DESCRIBES is extraordinarily high and needs to be investigated. Usually
there are only a few.

5. The number of SQL PREPAREs is high. Is the logic PREPAREing for every SQL statement
for execution, usually these PREPAREs are based on logic unit-of-work (UOW)
processing. The number of PREPARES doesn’t seem to reflect UOW logic, CURSOR
usage or number of DESCRIBEs.

45

© Copyright 2021 Dave @ davebeulke.com

Reduced SQL calls by 99%
• Performance problem symptoms

• Slow response time

• Deadlocking application

• Huge I/O rate against the database

• Profile the application uncovered the issue
• Discovered 60,000+ SQL calls for process

• Wrong looping within the application

• Web pages showed the correct data

• Understand what java classes are calling database/table(s)/SQL

46

© Copyright 2021 Dave @ davebeulke.com

Can transaction cache be transferred?
• Where do the services go?

• Services Architecture

• Connection validation & reuse

• Transaction/Data integrity

• Security authorization

• Thread caching and reuse

• Plan/Package authorization caching

47

© Copyright 2021 Dave @ davebeulke.com

Number of Clouds, Servers, UOW & Connections
• How many does the application really need?

• Database(s)
• Db2 LUW, Db2 z/OS & Oracle in one transaction

• Queues
• Inbound and outbound

• Web and App Server connection threads

• Parallelism and connection state
• Mind the state of all of these connections

• How long each is active

• How long the transaction UOW is!

• What is the UOW within each OS, database, within which table(s).

48

© Copyright 2021 Dave @ davebeulke.com

Developer Bad Habits
• Chaos - Developers want their own environment

• Helps team communicate
• Test and debug without worrying about locking rows used by others

• Test data problems
• Isolated testing for only a small variety of data

• Don’t have full range or set of data or complexity of data needed for all tests

• How many different tests are runs? How many are enough?

• How many network round trips to get the transaction completed?
• Within the application, UOW and java class(es)

49

© Copyright 2021 Dave @ davebeulke.com

Summary - Java
• Avoid any and all Java Frameworks

• Understand usage of Java Packages, Classes and versions – hopefully only 1

• Minimize Java open source packages – updates & security liabilities?

• Understand usage of JVM, memory cache, java types ie; Hash Maps etc.
• Use IDE Profiling to understand memory usage

• In terms of database information cached

• Use IDE Debug mode to fully document logic looping
• Automate Junit testing

• Understanding how much Garbage your program produces during UOW
• Fully document GC at full capacity performance load

• Test your java processing, transaction and UOW for being Thread Safe

• Understand failover and scalability liabilities limitations – Cloud/server/app
50

© Copyright 2021 Dave @ davebeulke.com

Summary - Java Db2
• Fully understand connection usage and UOW scope

• Logic loop reflection of UOW

• Understand Locking scope of UOW
• Locks usage, locks acquired, retained and released during UOW and full runtime

• Understand COMMIT scope and failover

• SQL etiquette
• SQL column to Java data type usage

• SQL parameter markers

• SQL EXPLAIN captured

• SQLCODE checking/handling immediately after SQL executed

• CLOSE clean up all database resources – SQL Stmts, ResultSets, Connection

51

© Copyright 2021 Dave @ davebeulke.com

Thank you!!

Send any questions or comments to Dave @ Dave Beulke . com

Performance BLOG:
www.DaveBeulke.com

52

Twitter (@DBeulke)
LinkedIn (www.linkedin.com/in/davebeulke)

